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Correspondence

Statistical Analysis of the Main Parameters Involved in the system. In order to perform this analysis, the most relevant variables
Design of a Genetic Algorithm in the design of a GA have been taken as the main factors. Thus, pop-
ulation size, selection, crossover and mutation operators, the number
Ignacio Rojas, Jesls Gonzalez, Héctor Pomares, J. J. Merelo, of generations, and the crossover and mutation probabilities have been
P. A. Castillo, and G. Romero considered.

Il. APPLICATION OF ANOVA IN THE DESIGN OF A

Abstract—Most genetic algorithm (GA) users adjust the main param- GENETIC ALGORITHM

eters of the design of a GA (crossover and mutation probability, popula-
tion size, number of generations, crossover, mutation, and selection opera-  The ANalysis Of the VAriance (ANOVA) is one of the most widely

tors) manually. Nevertheless, when GA applications are being developed it | o gratistical techniques. The theory and methodology of ANOVA
is very important to know which parameters have the greatest influence on

the behavior and performance of a GA. The purpose of this study was toan- Was developed mainly by R. A. Fisher during the 1920s [2]. ANOVA
alyze the dynamics of GAs when confronted with modifications to the prin-  belies its name in that it is not concerned with analyzing variances but
cipal parameters that define them, taking into account the two main charac-  rather with analyzing the variation in means. ANOVA examines the ef-
teristics of GAs; their capacity for exploration and exp!oitatiqn. Theref(‘)re,‘ fects of one, two, or more quantitative or qualitative variables (termed
the dynamics of GAs have been analyzed from two viewpoints. The firstis o4 on one quantitative response. ANOVA is useful in a range of
to study the best solution found by the system, i.e., to observe its capacity . . 7 L
to obtain a local or global optimum. The second viewpoint is the diversity diSCiplines when it is suspected that one or more factors affect a re-
within the population of GAs; to examine this, the average fitness was cal- sponse. ANOVA is essentially a method of analyzing the variance to
culated. The relevancy and relative importance of the parameters involved which a response is subject into its various components, corresponding
in GA design are investigated by using a powerful statistical tool, the ANal- 14 the sources of variation which can be identified [7]. Suppose the easy
ysis Of the VAriance (ANOVA). case that the number of factors affecting the outcome of the experiment

Index Terms—ANalysis Of the VAriance (ANOVA), genetic algorithm is2. We denote byX; ; (i =1, ...nl; j =1, ..., n2) the value ob-

(GA), statistical analysis. served when the first factor is at thi level and the second at thih

level. It is assumed that the two factors do not act independently and
therefore that there exists an interaction between them. In this case, the
observations fit the following equation:

The motivation of the present statistical study lies in the great variety i} . ) .
of alternatives that a designer has to take into account when designing Xigow = ptai+ G+ (aB)i; + 0; @)

a genetic algorithm (GA). This glecision is usually t_aken in terms of “Whereu is the fixed effect that is common to all the populationsis

most common values or experimental formulas given in the literatufe effect associated with tfieh level of the first factor; and; ; ; is

or by means of trial and error [5], [8]. Nevertheless, it is very impolhe effect associated with thigh level of the second factor. The term
tant to know which parameters involved in the design of a GA have '[I(l@lﬁ)i’j denotes the joint effect of the presence of levef the first
greatest influence on its behavior and performance [3], [11]. When &gctor and levelj of the second one; this, therefore, is denominated
alyzing the influence of each of these parameters, the designer shatlélinteraction term. The term_;  is the influence on the result of
pay most attention to the one presenting the values that are statisticallgrything that could not be assigned or of random factors. The null
most significant. Thus, it should be possible to avoid the necessity f9ypothesis is proposed that each term of the above equation is inde-
a detailed analysis of different configurations that might, in fact, |e:’:pbndent of the levels involved; i.e., on the one hand we have the two
to the design of various GAs with very similar behavior patterns. Akquality hypotheses for the levels of each factor

though GAs have been applied to a wide range of difficult problems in

numerous areas of science and engineering, there does not exist much Hopray = =ai=-=an

theoretical or experimental analysis of the influence of the operators Ho: pr =" =0;="-=pFn2 2

and the parameters (including interactions) involved in their design [4

[6]. Conzequently, the goal ogf]this correspgmdence is to obtain agbéégld onthe other ha_nd, the hypot_hesis associated withinteraction, which
insight into which are the most relevant factors in GA design, in ord&f" be expressed in an abbreviated way as

to establish the elemental operations whose alternatives should be care- Hos: (af)i; =0, Yi, j. (3)

fully studied when a real application is developed.

To do this, an appropriate statistical tool has been used: the multifd§1® hypothesis of the equality of several means arises when a number
torial analysis of the variance [7], which consists of a set of statistic@ different treatments or levels of the main factors are to be compared.
techniques that allow the analysis and comparison of experiments,fggauently, one is interested in studying the effects of more than one
describing the interactions and interrelations between either the quitor or the effects of one factor when certain other conditions of the

titative or qualitative variables (callefctorsin this context) of the €xPeriment vary, which then play the role of additional factors.
With ANOVA, we test a null hypothesis that all of the population

means are equal against an alternative hypothesis that there is at least
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TABLE |
VARIABLES USED FOR THESTATISTICAL STUDY
Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

Population size Decrement Decrement Nominal Value | Increment Increment

40% 20% 20% 40%
Number of Generations Decrement Decrement Nominal Value | Increment Increment

40% 20% 20% 40%
Crossover probability: pc 0.4 0.5 0.6 0.7 0.8
Mutation probability: pm 0.05 0.1 0.15 0.2 0.25
Type of Crossover One-point Two-points
Type of Mutation Bit-flip Inversion
Type of Selection Roulette Elitist Roulette | Deterministic

Wheel Wheel
Type of Experiment Knapsack Prisoner’s Riolo function | Michalewicz | Michalewicz | Michalewicz

problem dilemma function 1 function 2 function 3

by using a weighted average of the sample variances. This varianc&atfon operators, and the type of experiment. Table | gives the dif-

called thevariance within the mean3herefore, ANOVA allows us to ferent levels considered in each factor when carrying out multifactorial

determine whether a change in the measure of a given variable is causB®OVA (this is not a one-way ANOVA because we considered all the

by a change in the level of a factor or is just originated by a random é#ctors simultaneously). Each of these factors has different levels. For

fect. In this way, it allows us to distinguish between the componenégample, Roulette Wheel, Elitist Roulette Wheel, and Elitist Selection

which cause the variations appearing in a set of statistical data anchie the levels considered for the type of selection used for the repro-

determine whether the discrepandiegweerthe means of the factors duction process. The response variables used to perform the statistical

are greater than would reasonably be expected according to the vagigalysis are maximum and average fitness in the last generation. The

tions within these factors. changes in the response variables are produced when a new combina-
The two estimates of the population variance are then compaigsh of crossover probability, mutation probability, population size, etc.

using theF -ratio test statistic. Calculating the sum of the squares ¢ considered, thus changing the design of the GA.

the observations extended to the levels of all the fact8rg @nd the

sum of squares within each levél£), and dividingS, andSx by the IV. EXPERIMENTAL SETUP

appropriate number of degrees of freeddmf’), obtainingsr andsr,

respectively, thé-ratio is computed as; /s. This calculated value ~ Since a GA's performance (and its parameters setting) depends on

of the F-ratio for each factor is then compared to a critical valuE af ~ the fitness function being optimized, problems of different types were

Snedecor with the appropriate degrees of freedom to determine whet##gd (one was combinatory, one was a strategy search, and others

we should reject the null hypothesis. When there is no treatment effékgre numerical optimization, including multimodal and deceptive

the ratio should be close to 1. If a level of a main effect has a significaitnctions), in order to study the influence of the various factors on the

influence on the output variable (observed variable, in our case the eg6tution found by the algorithm.

index), the observed value @ will be greater than thé™-Snedecor ~ We have selected the following problems:

distribution, with a sufficiently high confidence level (usually 95%). In « 0/1 Knapsack problem;

this case, the null hypothesis is rejected and it is argued that at leasts Riolo function;

one of the levels of the analyzed factor must affect the response of the. Prisoner’s dilemma;

systemin a different way. ThE-ratio test assumes normal populations « Michalewicz's functions [8]

with equal variance and independent samples. The analysis is sensitive

to inequality of variance (heteroscedasticity) when the sample sizes are Pl —esin(l0re) +1 =20 <o < 1.0
small and unequal and care should be taken in interpreting the results. F2: intege(8x)/8 0.0<x<1.0 4)
The comparison between ti#ératio and theF’-Snedecor distribution F3: asgn(e) 1.0< 2 < 2.0.

is expressed through the significance lex&ig( Leve). If this signifi-
cance level is lower than 0.05 then the corresponding levels of the factor
are statistically significant with a confidence level of 95%. V. ReEsuLTs oF THEANOVA STATISTICAL STUDY

The levels of a factor that are not statl_stlcally different form a ho- n this section, a statistical study is performed in order to determine
mogeneous group and therefore the choice between the various le!

belonaing t : h h onificant “most relevant parameters in a GA design. The dynamics of GAs are
elonging fo a given homogeneous group has no signitican reperc&ﬁé\lyzed from two viewpoints. The first is to study the best solution

sion on the response. Thus, once we discover that some of the fac . ) . o
involved in the design of an GA do not fulfill the null hypothesis, %8[1%(]' by the system (maximum fitness). The second viewpoint is the

- ) . . iversity within th lation of GAs; xamine this, the aver

study is carried out of the levels of this factor that may be con5|derfz{§/e sity within the population of GAs; to examine this, the average
e S . . : ithess was calculated.

statistically nonsignificant, usingultiple range testables for this pur-

pose; these tables describe the homogeneous groups possible for ﬁ’?‘cﬁnalyzing the Best Solution

of the levels of the factor being analyzed. . . o .
In this case, we are seeking the best of all the individuals within the

last population examined. What really matters is to achieve a good in-
dividual during the execution of the algorithm. For this purpose, it is
In the statistical study performed in Section V, the factors considenvenient to select the parameters for a broad-based exploration of
ered are the crossover and mutation probabilities, the population sites search space within the algorithm. Therefore, all the possible con-
the number of generations, the type of selection, crossover, and rfigurations of factors used (the crossover and mutation probability, the

Ill. _FACTORS CONSIDERED IN. THE STATISTICAL ANALYSIS
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TABLE I
ANOVA T ABLE FOR THE ANALYSIS OF THE MAIN PARAMETER IN THE DESIGN OF AGA FROM THE VIEWPOINT OF THEBEST FITNESS
Source Sum of DF Mean Square F-Ratio Sig.level
Squares
Main Factors
|

Experiment 0.458 5 0.114 8.94 0.000
Population size 15.337 4 3.834 298.91 0.000
Number of Generations 0.407 4 0.101 7.95 0.000
Crossover probability: p, 1.541 4 0.385 30.04 0.000
Mutation probability: p,, 0.345 4 0.086 6.73 0.000
Type of Crossover 0.081 1 0.081 6.34 0.012
Type of Mutation 1.721 1 1.721 134.18 0.000
Type of Selection 84.07 2 42.031 3277.14 0.000

Signiﬁcant Interactions
Cross. prob. & Generation 0.642 16 0.040 2.76 0.000
Population & Selection 4.879 8 0.610 41.96 0.000
Generation & Selection 3.782 8 0.473 32.53 0.000

population size, the number of generations, crossover, mutation, avith the highest value for the Best Fitness. However, as mentioned in
selection operators) are evaluated for each of the different exampl@ds, [9], and [12], the population of the GA must also possess diversity;
Table |l gives the four-way variance analysis for the whole set of probtherwise there might occur a premature convergence of the algorithm.
lems studied (the function fithess is normalized in the range [0, 1], févith respect to the two Roulette Wheel-based methods, the variation
comparison of all the examples). The analysis of variance table cdhat ensures that at least one copy of the best solution is obtained in
taining the sum of squares, degrees of freedom, mean square, testtetanew population produces results that are statistically different from
tistics, etc., represents the initial analysis in a compact form. This kitladbse produced by pure Roulette Wheel; the latter gives better results
of tabular representation is customarily used to set out the resultsioferms of the best fitness.

ANOVA calculations. For the population size, five homogenous groups are identified using
As can be seen from Table II, all the different variables analyzed §jumns ofX's. Logically, as the number of individuals in the popula-
the statistical process have a significant influence on the evolutionyfn increases, there is a greater probability that the fitness of the best
the GA, in terms of the best solution. Note that the selection operaiggividual will be higher. It should be noted that several researchers
type adopted, the population size and the type of mutation occurriRgve investigated population size for GAS from different perspectives.
present the greatest statistical relevance because the higlfer#t®  some have provided a theoretical analysis of the optimal population

or the smaller the significance level, the greater the relevance of ige [3], [12]. Usually, however, most effort was dedicated to the em-
corresponding factor. The crossover and mutation probabilities and B’]ﬁca_| finding of the “optimal” population size [11]. Also, the relation-
type of crossover are not so significant, even though several of the levgi§y between replacement operator and population size was analyzed
employed in this study produce statistically different behavior patterys[10]. The experimental results presented in Table Ill corroborate the
concerning the output variable. importance of population size in terms of Best Fitness; nevertheless,
These conclusions are also confirmed by the multiple range tables f@rdescribed in the following subsection, for diversity within the pop-

the different factors (see Table IIl). The multiple range table appliesgation of GAs (average fitness and its standard deviation), there exist
multiple comparison procedure to determine which means are signfipre influential factors than population size.

cantly different. By analyzing the different levels of each of these main Concerning the number of generations, there are four homogeneous

factors, itis poss!ble to deter_mlne their influence on the charac_terlst r%ups that are not disjointed, and thus there exist levels of this factor
of the GA, enabling levels with the same response repercussion to ch can be classified within two groups simultaneously. The first

grouped homogeneously. of these comprises level 1 (the number of generations is 40% lower

For one of the most significant factors, the selection operator, th%%n the nominal value) and the last comprises level 5 (an increase of

exist three homogeneous groups that have no intersection. This mei?(gl%). As can be inferred from these tables, the greater the number

tTa:. tthe ‘l’leh‘f’“"‘.’ff of :hsv_ttl;]r_ee opﬁrat?rs IS tcri]lff(TrenT and tth_ereforeolfsgenerations or population size, the more possibilities there are of
statistically significant. Within each column, the levels containig gchieving a good individual from the current population, as there exists

form a group of means within which there are no sta_UspcaIIy SI9NY greater variety of individuals and these have evolved through several
icant differences. The method currently used to discriminate betwe é%lerations

the means s Fisher’s least significant difference (LSD) procedure. With ) ) N )
this method, there is a 5.0% risk of labeling each pair of means as sigjl'able 1] .d.es.crlbes the results for the mutation probability, sh0W|.ng
nificantly different when the actual difference is zero. three nondisjoint homogeneous groups (some values correspond simul-
There is a considerable difference between the determinist mett{Bg€ously to two homogeneous groups). The levels of this factor are or-
and the other two, based on the Roulette Wheel. This is due to the v##8fed such that the lowest mean LS corresponds to the lowest mutation
in which each of the selection methods functions. The determinisfi€obability value used (PM1), while the Best Fitness is obtained with a
method is the most elitist of the three, due to the way in which it aBigh mutation probability (PM5). The utility of the mutation operator,
signsrasnumberiof copiesiinithernew population that are directly pregether with the probability of applying it to the population elements,
portional to the fitness of each individual. As can be seen in Table li§ that it provides diversity by introducing extra variability into the pop-
individuals with a high level of fitness survive among the populationlation. Due to its behavior, the mutation probability is not so signifi-
using the deterministic method; therefore this is the selection operatant from the point of view of the Best Fitness, but it is very important
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TABLE Il
MULTIPLE RANGE TESTS FOR THEVARIABLE ANALYZING THE BESTFITNESS

Levels of variable "Type of Selection" LS Mean Homogeneous Groups
S1: Roulette Wheel 0.8119 X
S2: Elitist Roulette Wheel 0.8582 X
S3: Deterministic 0.9584 X
Limit to establish significant differences: + 0.004
Levels of variable "Population" LS Mean Homogeneous Groups
POP1: Decrement 40% 0.8325 X
POP2: Decrement 20% 0.8619 X
POP3: Nominal Value 0.8871 X
POP4: Increment 20% 0.8943 X
POPS: Increment 40% 0.9053 X
Limit to establish significant differences: + 0.005
Levels of variable "Generation" LS Mean Homogeneous Groups
GENI: Decrement 40% 0.8591 X
GEN3: Nominal Value 0.8752 X
GEN2: Decrement 20% 0.8757 X X
GEN4: Increment 20% 0.8802 X
GENS: Increment 40% 0.8860 X
Limit to establish significant differences: + 0.005
Levels of variable "Mutation Probability" LS Mean Homogeneous Groups
PMI1: 0.05 0.8701 X
PM2: 0.1 0.8746 X X
PM3: 0.15 0.8771 X
PM4: 0.2 0.8773 X
PMS: 0.25 0.8821 X
Limit to establish significant differences: + 0.005
Levels of variable "Crossover Probability” LS Mean Homogeneous Groups
PC1: 04 0.8624 X
PC2: 0.5 0.8716 X
PC4: 0.7 0.8793 X
PC3: 0.6 0.8831 X X
PCS5: 0.8 0.8847 X
Limit to establish significant differences: + 0.005
Levels of variable "Type of Crossover" LS Mean Homogeneous Groups
C1: One-point 0.8743 X
C2: Two-points 0.8771 X
Limit to establish significant differences: + 0.003
Levels of variable "Type of Mutation" LS Mean Homogeneous Groups
M1: Bit-flip 0.8675 X
M2: Inversion 0.8850 X
Limit to establish significant differences: + 0.003
Levels of variable "Type of Experiment" LS Mean Homogeneous Groups
EXP2: Prisoner’s dilemma 0.8621 X
EXP1: Knapsack problem 0.8898 X
EXP3: Riolo function 0.8949 X X
EXP4: Michalewicz function 1 0.9011 X X
EXP6: Michalewicz function 3 0.9061 X
EXP5: Michalewicz function 2 0.9071 X

(=]
[l
(=1
~

Limit to establish significant differences: + 0.

when the diversity of the GA is analyzed. For the crossover probabilitgtion, although average fithess would be lower; on the other hand, new
there are four overlapping homogeneous groups. In this case, the pridnes within the search space could be explored, where high fithess so-
ability levels are not totally ordered, although the lowest values.of lutions might be found.
produce a lower mean LS value. With respect to the crossover operatok/e also consider the type of experiment performed to be a factor
it is clear that there do not exist two nondisjoint groups of the opethat should be taken into account in statistical analysis. Table Ill
ator type. Therefore, the crossover operators that have been desigtenvs there are differences between the various examples, although
present a very similar behavior pattern (one- and two-point crossovehjs factor is not the most relevant in the analysis. As mentioned
Regarding the mutation operator, from Table Il it is clear that the@bove, the type of selection, type of mutation, and population size
are two homogeneous groups with no intersection, of which the biiresent a higheF'-ratio. Nevertheless, it is interesting to analyze the
flip-typeproduces,alowernmeandSoThereason for this is to be foufmlr nondisjoint groups that make up the six levels of the “type of
in the functioning of the mutation operator. The inversion operator prexperiment” factor. In the first group, with no intersection with the
duces a higher average number of changes in the bits among the paphers, is the Prisoner’s dilemma. The second and third groups include
lation elements. This could lead to a greater diversity among the poplie Knapsack, Riolo, and Michalewicz function 1 problems, which do
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TABLE IV
ANOVA TABLE FOR THE ANALYSIS OF THE MAIN PARAMETER IN THE DESIGN OF AGA FROM THE VIEWPOINT OF THEAVERAGE FITNESS
Source Sum of DF | Mean Square F-Ratio Sig.level
Squares
Main Factors
R ————

Experiment 0.255 5 0.0638 5.34 0.000
Population size 1.015 4 0.253 17.4 0.000
Number of Generations 6.033 4 1.508 103.7 0.000
Crossover probability: p. 0.1312 4 0.0328 3.50 0.017
Mutation probability: p, 30.25 4 7.562 631.7 0.000
Type of Crossover 0.0335 1 0.0335 3.58 0.058
Type of Mutation 1.85 1 1.855 127.6 0.000
Type of Selection 384.7 2 192.37 13232 0.000

Significant Interactions
Population & Selection 4.879 8 0.609 41.96 0.000
Mutation prob. & Crossover prob. 0.754 16 0.047 3.94 0.000
Generation & Selection 3.782 8 0.472 32.53 0.000

intersect. The final group includes the three minimization function®ising the population, which could result in greater diversity and thus
presented in Michalewicz. a lower average fitness value than the bit-flip mutation operator.

An important analysis that must be carried out is that of the inter- As expected, when the number of generations increased, so did the
action between the main effects considered Table Il. Although all teeerage fitness. In this case, the different levels of this factor are ordered
interactions between the factors have been analyzed, the most stafiisiim lowest to highest. Of the other factors analyzed, it is noteworthy
cally significant interactions are between the population size and tt&t population size is not such a relevant factor in average fitness, as it
selection operator, between the number of generations and the selegs in best fitness, because the former is obtained for the total number
tion operator and between the number of generations and the crosso¥éndividuals in the final generation and, statistically, this mean is very

probability. similar for the different population sizes tested. Nevertheless, when the
population size is very large (POPS5), there exists the possibility of ex-
B. Analyzing the Diversity: The Average Fitness ploring a greater number of regions within the input space, although

Th thodol loved is th that d ibed in th some of these will present a small fitness value. This would resultin a
€ methodology employed IS the same as that described In the Fﬂr&;;rease in Average Fitness (in Table V, for POPS5 the increase of 40%

vious s_ub_sgctlon. In_ th's case, we are ca_llculatmg_the average fltn_es resents the lowest mean LS, and the different levels are ordered from
all the individuals within the last population examined. Table IV give ighest to lowest)

variance analysis for.the average fitness. . . Finally, the factors with least influence on population diversity

The type of selection operators, the mutation probability and typgre the type of crossover used and the application probability. For
and the number of generations present the greatest statistical relev. %€ Crossover Probability factor, there are two groups with a .high
On analyzing the selection operator in the multiple range test table dgree of intersection. This means that the choice between different
the average fitness (see Table V), we find that the determinist select&%gssover probabilities does not greatly alter the behavior of the GA
operator presents the highest mean, while the Roulette Wheel prod%ﬁ

. R respect to diversity. It should be noted that, on the contrary to
the lowest. The reason for this is that the Roulette Wheel operator PIRa other factors analyzed, the levelspofare not perfectly ordered
duces the greatest diversification in the GA solutions. Despite the f ’ '

=2 . AN (ﬁthough there does exist a tendency for a lower probability of the

that the_ likelihood pf Fhe number of copies of each solution is direct tter to be associated with a probability of higher Average Fitness in
proportional to_thelr fltr_less, due to the ran_domness of th_e Process, iHE final population. With regard to the type of crossover, just as with
n_umb(_ar of copies obtal_ned may vary ConS|derany, thus increasing st Fitness, there do not exist two nondisjoint groups of the crossover
diversity of_the popul_atlon and reducing average fitness. Neverthele e and the operators that have been designed present a very similar
the determinist algorithm presents the highest Average Fitness val avior pattern.

When we analyze the mutation probability factor, it is important to
note that the different levels of this parameter produce five disjoint
sets; thusi it is highly relevant to a study of Average Fitness. The lowest
mean value is found with the highest mutation probability (PM5); ob- A statistical study of the different parameters involved in the de-
viously, this is due to the fact that the latter is associated with diversiign of a GA has been carried out by using the analysis of variance
among the population, with low fitness individuals lowering the AvfANOVA), which consists of a set of statistical techniques that analyze
erage Fitness value. Table V shows that the levels of this factor are and compare experiments by describing the interactions and interre-
dered from highest probability (lowest mean LS) to lowest probabilitiations between either the quantitative or qualitative variables (called
(highest mean LS). It should be noted that the mutation probability igactorsin this context) of the system. The motivation of the present sta-
determining factor in the evolution of the GA in terms of diversity (avtistical study lies in the great variety of alternatives that a designer has to
erage and standard deviation), because its function is to explore rtake into account when designing a GA. Thus, instead of relying on in-
areas'withinithersearchrspacerby carryingroutirandom changes wittiive knowledge, it is necessary to gain a more precise understanding
the chains of bits. of the significance of the different alternatives and their interaction. For

Regarding the mutation operator, inversion or specular reflectiexample, the selection operator, the number of generations, the muta-
produces a greater number of changes'in the bits of the individuals cdion probability, and the size of the population within a GA are factors

VI. CONCLUSION
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TABLE V
MULTIPLE RANGE TESTS FOR THEVARIABLE ANALYZING THE AVERAGE FITNESS

Levels of variable "Type of Selection” LS Mean Homogeneous Groups
S1: Roulette Wheel 0.3149 X
S2: Elitist Roulette Wheel 0.4476 X
S3: Deterministic 0.6337 X
Limit to establish significant differences: + 0.004
Levels of variable "Population” LS Mean Homogeneous Groups
POPS: Increment 40% 0.4556 X
POP4: Increment 20% 0.4605 X
POP3: Nominal Value 0.4657 X
POP2: Decrement 20% 0.4715 X
POP1: Decrement 40% 0.4737 X
Limit to establish significant differences: + 0.005
Levels of variable "Generation” LS Mean Homogeneous Groups
GENI1: Decrement 40% 0.4379 X
GEN2: Decrement 20% 0.4579 X
GEN3: Nominal Value 0.4687 X
GEN4: Increment 20% 0.4784 X
GENS: Increment 40% 0.4841 X
Limit to establish significant differences: +0.005
Levels of variable "Mutation Probability" LS Mean Homogeneous Groups
PMS5: 0.25 0.4184 X
PM4: 0.2 0.4391 X
PM3: 0.15 0.4611 X
PM2: 0.1 0.4842 X
PM1: 0.05 0.5242 X
Limit to establish significant differences: + 0.005
Levels of variable "Crossover Probability" LS Mean Homogeneous Groups
PC5: 0.8 04572 X
PC3: 0.6 0.4601 X X
PC4: 0.7 0.4613 X X
PC2: 0.5 0.4628 X
PC1: 0.4 0.4644 X
Limit to establish significant differences: + 0.005
Levels of variable "Type of Crossover" LS Mean Homogeneous Groups
C1: One-point 0.4622 X
C2: Two-points 0.4646 X
Limit to establish significant differences: + 0.003
Levels of variable "Type of Mutation” LS Mean Homogeneous Groups
M2: Inversion 0.4563 X
M1: Bit-flip 0.4745 X
Limit to establish significant differences: + 0.003
Levels of variable "Type of Experiment" LS Mean Homogeneous Groups
EXP1: Knapsack problem 04319 X
EXP6: Michalewicz function 3 0.4397 X
EXP5: Michalewicz function 2 0.4405 X X
EXP4: Michalewicz function 1 0.4417 X X
EXP3: Riolo function 0.4448 X
EXP2: Prisoner’s dilemma 0.4529 X

Limit to establish significant differences: + 0.007

of great importance for the dynamics and quality of the convergencgtthe genetic operators, type of selection, mutation, and crossover op-
of a system. However, determining these parameters for a particudaators, number of generations, and population size). The methodology
problem is still an open question, and it is also necessary to beamb&sed on ANOVA makes it possible to classify different configurations
mind the impact of the experimental setup on the conclusions derivéldere calledevelg that can be used for given factors. Thus itis possible

It is also important not to isolate or eliminate the different interactiorte obtain homogeneous groups of levels with similar characteristics.
of.each.of the.above factors.with.the.others.In summary, it would beOne of the goals of this study was to analyze the dynamics of GAs
of great interest to perform an analysis of the influence of modifyinghen confronted with modifications to the principal parameters that
the main factor involved in the design of the GA, while simultaneouslyefine them, taking into account the two main characteristics of GAs;
taking into account-all the other parameters (application probabilitidseir exploration and exploitation capacity. Therefore, the dynamics of

www.manaraa.com
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GAs have been analyzed from two viewpoints. We studied the best so-  Pursuit Evasion: The Herding Noncooperative

lution found by the system, to observe its ability to obtain a local or Dynamic Game—The Stochastic Model

global optimum. The second viewpoint is the diversity within the pop-

ulation of GAs; to examine this, the average fitness was calculated. ForPushkin Kachroo, Samy A. Shedied, and Hugh Vanlandingham
the first viewpoint, the most important factors were selection operator,

type of mutation, the population size, and the number of generations.

It is noteworthy that the type of crossover factor (one point/two pointg}o

Abstract—This correspondence proposes a solution to the herding
blem, a class of pursuit evasion problem, in stochastic framework. The

produces practically identical results, although the application protb%mem involves a “pursuer” agent trying to herd a stochastically moving
bility (p..) does present statistically significant differences in the eveevader” agent to a pen. The problem is stated in terms of allowable
lution of the GA from the perspective of Best Fitness. Regarding tisequential actions of the two agents. The solution is obtained by applying
diversity of the population in the final generations, analysis of the affé Principles of stochastic dynamic programming. Three algorithms for

erage fithess revealed that the most important factors are the selection

lution are presented with their accompanying results.

and mutation operators and the mutation probability. Index Terms—Admissible policy search stochastic shortest path, policy

iteration, value function, value iteration.

. INTRODUCTION

This correspondence presents the herding problem as a class of
pursuit evasion problems. However, in pursuit evasion problems, the
terminal state satisfies the spatial coordinates of the pursuer and the

ACKNOWLEDGMENT evader to be the same [1]-[3]. Meanwhile, the terminal state in the
herding problem relates to the evader having reached and satisfied at
the same time fixed spatial coordinate point. In another paper [4], we

The authors appreciate the comments from the anonymous referéese studied the herding problem in a deterministic setting where the

(1]
(2]
(3]
(4]

(3]

(6]

(71

(8]
9]

[10]

[11]

[12]

evader is passive. This correspondence studies the stochastic version
of the problem where the evader dynamics involves randomness. A
classic pursuit evasion game in a stochastic framework was studied
[5], but with different terminal state than that of the problem studied
here.

This problem can be viewed as a modified version of stochastic
shortest path problems. Despite the fact that shortest path techniques,
like label correcting algorithms [6] and auction algorithms [7], provide
a solution to shortest path problems, these techniques fail to deal with
situations like the one we study in this correspondence.

L. Davis, The Handbook of Genetic AlgorithmsNew York: Van Nos- The correspondence is organized as follows. In Section II, we
trand, 1991. give a detailed description of the system dynamics since it represents

R. A. Fisher, “Theory of statistical estimation,” iRroc. Cambridge - .
Philos. SoG.vol. 22, 1925, pp. 700—725. the backbone of our proposed solution technique. Based on these
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