
www.manaraa.com

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 32, NO. 1, FEBRUARY 2002 31

Correspondence________________________________________________________________________

Statistical Analysis of the Main Parameters Involved in the
Design of a Genetic Algorithm

Ignacio Rojas, Jesús González, Héctor Pomares, J. J. Merelo,
P. A. Castillo, and G. Romero

Abstract—Most genetic algorithm (GA) users adjust the main param-
eters of the design of a GA (crossover and mutation probability, popula-
tion size, number of generations, crossover, mutation, and selection opera-
tors) manually. Nevertheless, when GA applications are being developed it
is very important to know which parameters have the greatest influence on
the behavior and performance of a GA. The purpose of this study was to an-
alyze the dynamics of GAs when confronted with modifications to the prin-
cipal parameters that define them, taking into account the two main charac-
teristics of GAs; their capacity for exploration and exploitation. Therefore,
the dynamics of GAs have been analyzed from two viewpoints. The first is
to study the best solution found by the system, i.e., to observe its capacity
to obtain a local or global optimum. The second viewpoint is the diversity
within the population of GAs; to examine this, the average fitness was cal-
culated. The relevancy and relative importance of the parameters involved
in GA design are investigated by using a powerful statistical tool, the ANal-
ysis Of the VAriance (ANOVA).

Index Terms—ANalysis Of the VAriance (ANOVA), genetic algorithm
(GA), statistical analysis.

I. INTRODUCTION

The motivation of the present statistical study lies in the great variety
of alternatives that a designer has to take into account when designing
a genetic algorithm (GA). This decision is usually taken in terms of the
most common values or experimental formulas given in the literature,
or by means of trial and error [5], [8]. Nevertheless, it is very impor-
tant to know which parameters involved in the design of a GA have the
greatest influence on its behavior and performance [3], [11]. When an-
alyzing the influence of each of these parameters, the designer should
pay most attention to the one presenting the values that are statistically
most significant. Thus, it should be possible to avoid the necessity for
a detailed analysis of different configurations that might, in fact, lead
to the design of various GAs with very similar behavior patterns. Al-
though GAs have been applied to a wide range of difficult problems in
numerous areas of science and engineering, there does not exist much
theoretical or experimental analysis of the influence of the operators
and the parameters (including interactions) involved in their design [4],
[6]. Consequently, the goal of this correspondence is to obtain a better
insight into which are the most relevant factors in GA design, in order
to establish the elemental operations whose alternatives should be care-
fully studied when a real application is developed.

To do this, an appropriate statistical tool has been used: the multifac-
torial analysis of the variance [7], which consists of a set of statistical
techniques that allow the analysis and comparison of experiments, by
describing the interactions and interrelations between either the quan-
titative or qualitative variables (calledfactors in this context) of the
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system. In order to perform this analysis, the most relevant variables
in the design of a GA have been taken as the main factors. Thus, pop-
ulation size, selection, crossover and mutation operators, the number
of generations, and the crossover and mutation probabilities have been
considered.

II. A PPLICATION OF ANOVA IN THE DESIGN OF A

GENETIC ALGORITHM

The ANalysis Of the VAriance (ANOVA) is one of the most widely
used statistical techniques. The theory and methodology of ANOVA
was developed mainly by R. A. Fisher during the 1920s [2]. ANOVA
belies its name in that it is not concerned with analyzing variances but
rather with analyzing the variation in means. ANOVA examines the ef-
fects of one, two, or more quantitative or qualitative variables (termed
factors) on one quantitative response. ANOVA is useful in a range of
disciplines when it is suspected that one or more factors affect a re-
sponse. ANOVA is essentially a method of analyzing the variance to
which a response is subject into its various components, corresponding
to the sources of variation which can be identified [7]. Suppose the easy
case that the number of factors affecting the outcome of the experiment
is 2. We denote byXi; j (i = 1; . . .n1; j = 1; . . . ; n2) the value ob-
served when the first factor is at theith level and the second at thejth
level. It is assumed that the two factors do not act independently and
therefore that there exists an interaction between them. In this case, the
observations fit the following equation:

Xi; j; k = �+ �i + �j + (��)i; j + �j (1)

where� is the fixed effect that is common to all the populations;�i is
the effect associated with theith level of the first factor; and"i; j; k is
the effect associated with thejth level of the second factor. The term
(��)i; j denotes the joint effect of the presence of leveli of the first
factor and levelj of the second one; this, therefore, is denominated
the interaction term. The term"i; j; k is the influence on the result of
everything that could not be assigned or of random factors. The null
hypothesis is proposed that each term of the above equation is inde-
pendent of the levels involved; i.e., on the one hand we have the two
equality hypotheses for the levels of each factor

H01: �1 = � � � = �i = � � � = �n1

H02: �1 = � � � = �j = � � � = �n2 (2)

and on the other hand, the hypothesis associated with interaction, which
can be expressed in an abbreviated way as

H03: (��)ij = 0; 8 i; j: (3)

The hypothesis of the equality of several means arises when a number
of different treatments or levels of the main factors are to be compared.
Frequently, one is interested in studying the effects of more than one
factor, or the effects of one factor when certain other conditions of the
experiment vary, which then play the role of additional factors.

With ANOVA, we test a null hypothesis that all of the population
means are equal against an alternative hypothesis that there is at least
one mean that is not equal to the others. We find the sample mean and
variance for each level of the main factor. Using these values, we ob-
tain two different estimates of the population variance. The first one is
obtained by finding the sample variance of thenk sample means from
the overall mean. This variance is referred to as thevariance between
the means. The second estimate of the population variance is found
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TABLE I
VARIABLES USED FOR THESTATISTICAL STUDY

by using a weighted average of the sample variances. This variance is
called thevariance within the means. Therefore, ANOVA allows us to
determine whether a change in the measure of a given variable is caused
by a change in the level of a factor or is just originated by a random ef-
fect. In this way, it allows us to distinguish between the components
which cause the variations appearing in a set of statistical data and to
determine whether the discrepanciesbetweenthe means of the factors
are greater than would reasonably be expected according to the varia-
tionswithin these factors.

The two estimates of the population variance are then compared
using theF -ratio test statistic. Calculating the sum of the squares of
the observations extended to the levels of all the factors (ST ) and the
sum of squares within each level (SR), and dividingST andSR by the
appropriate number of degrees of freedom (D:F ), obtainingsT andsR,
respectively, theF -ratio is computed assT =sR. This calculated value
of theF -ratio for each factor is then compared to a critical value ofF of
Snedecor with the appropriate degrees of freedom to determine whether
we should reject the null hypothesis. When there is no treatment effect,
the ratio should be close to 1. If a level of a main effect has a significant
influence on the output variable (observed variable, in our case the error
index), the observed value ofF will be greater than theF -Snedecor
distribution, with a sufficiently high confidence level (usually 95%). In
this case, the null hypothesis is rejected and it is argued that at least
one of the levels of the analyzed factor must affect the response of the
system in a different way. TheF -ratio test assumes normal populations
with equal variance and independent samples. The analysis is sensitive
to inequality of variance (heteroscedasticity) when the sample sizes are
small and unequal and care should be taken in interpreting the results.
The comparison between theF -ratio and theF -Snedecor distribution
is expressed through the significance level (Sig. Level). If this signifi-
cance level is lower than 0.05 then the corresponding levels of the factor
are statistically significant with a confidence level of 95%.

The levels of a factor that are not statistically different form a ho-
mogeneous group and therefore the choice between the various levels
belonging to a given homogeneous group has no significant repercus-
sion on the response. Thus, once we discover that some of the factors
involved in the design of an GA do not fulfill the null hypothesis, a
study is carried out of the levels of this factor that may be considered
statistically nonsignificant, usingmultiple range testtables for this pur-
pose; these tables describe the homogeneous groups possible for each
of the levels of the factor being analyzed.

III. FACTORSCONSIDERED IN THESTATISTICAL ANALYSIS

In the statistical study performed in Section V, the factors consid-
ered are the crossover and mutation probabilities, the population size,
the number of generations, the type of selection, crossover, and mu-

tation operators, and the type of experiment. Table I gives the dif-
ferent levels considered in each factor when carrying out multifactorial
ANOVA (this is not a one-way ANOVA because we considered all the
factors simultaneously). Each of these factors has different levels. For
example, Roulette Wheel, Elitist Roulette Wheel, and Elitist Selection
are the levels considered for the type of selection used for the repro-
duction process. The response variables used to perform the statistical
analysis are maximum and average fitness in the last generation. The
changes in the response variables are produced when a new combina-
tion of crossover probability, mutation probability, population size, etc.
is considered, thus changing the design of the GA.

IV. EXPERIMENTAL SETUP

Since a GA’s performance (and its parameters setting) depends on
the fitness function being optimized, problems of different types were
used (one was combinatory, one was a strategy search, and others
were numerical optimization, including multimodal and deceptive
functions), in order to study the influence of the various factors on the
solution found by the algorithm.

We have selected the following problems:

• 0/1 Knapsack problem;
• Riolo function;
• Prisoner’s dilemma;
• Michalewicz’s functions [8]

F1: �x sin(10�x) + 1 �2:0 � x � 1:0

F2: integer(8x)=8 0:0 � x � 1:0

F3: xsgn(x) �1:0 � x � 2:0.

(4)

V. RESULTS OF THEANOVA STATISTICAL STUDY

In this section, a statistical study is performed in order to determine
the most relevant parameters in a GA design. The dynamics of GAs are
analyzed from two viewpoints. The first is to study the best solution
found by the system (maximum fitness). The second viewpoint is the
diversity within the population of GAs; to examine this, the average
fitness was calculated.

A. Analyzing the Best Solution

In this case, we are seeking the best of all the individuals within the
last population examined. What really matters is to achieve a good in-
dividual during the execution of the algorithm. For this purpose, it is
convenient to select the parameters for a broad-based exploration of
the search space within the algorithm. Therefore, all the possible con-
figurations of factors used (the crossover and mutation probability, the
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TABLE II
ANOVA TABLE FOR THE ANALYSIS OF THEMAIN PARAMETER IN THE DESIGN OF AGA FROM THE VIEWPOINT OF THEBEST FITNESS

population size, the number of generations, crossover, mutation, and
selection operators) are evaluated for each of the different examples.
Table II gives the four-way variance analysis for the whole set of prob-
lems studied (the function fitness is normalized in the range [0, 1], for
comparison of all the examples). The analysis of variance table con-
taining the sum of squares, degrees of freedom, mean square, test sta-
tistics, etc., represents the initial analysis in a compact form. This kind
of tabular representation is customarily used to set out the results of
ANOVA calculations.

As can be seen from Table II, all the different variables analyzed in
the statistical process have a significant influence on the evolution of
the GA, in terms of the best solution. Note that the selection operator
type adopted, the population size and the type of mutation occurring
present the greatest statistical relevance because the higher theF -ratio
or the smaller the significance level, the greater the relevance of the
corresponding factor. The crossover and mutation probabilities and the
type of crossover are not so significant, even though several of the levels
employed in this study produce statistically different behavior patterns
concerning the output variable.

These conclusions are also confirmed by the multiple range tables for
the different factors (see Table III). The multiple range table applies a
multiple comparison procedure to determine which means are signifi-
cantly different. By analyzing the different levels of each of these main
factors, it is possible to determine their influence on the characteristics
of the GA, enabling levels with the same response repercussion to be
grouped homogeneously.

For one of the most significant factors, the selection operator, there
exist three homogeneous groups that have no intersection. This means
that the behavior of the three operators is different and therefore is
statistically significant. Within each column, the levels containingXs
form a group of means within which there are no statistically signif-
icant differences. The method currently used to discriminate between
the means is Fisher’s least significant difference (LSD) procedure. With
this method, there is a 5.0% risk of labeling each pair of means as sig-
nificantly different when the actual difference is zero.

There is a considerable difference between the determinist method
and the other two, based on the Roulette Wheel. This is due to the way
in which each of the selection methods functions. The deterministic
method is the most elitist of the three, due to the way in which it as-
signs a number of copies in the new population that are directly pro-
portional to the fitness of each individual. As can be seen in Table III,
individuals with a high level of fitness survive among the population
using the deterministic method; therefore this is the selection operator

with the highest value for the Best Fitness. However, as mentioned in
[1], [9], and [12], the population of the GA must also possess diversity;
otherwise there might occur a premature convergence of the algorithm.
With respect to the two Roulette Wheel-based methods, the variation
that ensures that at least one copy of the best solution is obtained in
the new population produces results that are statistically different from
those produced by pure Roulette Wheel; the latter gives better results
in terms of the best fitness.

For the population size, five homogenous groups are identified using
columns ofXs. Logically, as the number of individuals in the popula-
tion increases, there is a greater probability that the fitness of the best
individual will be higher. It should be noted that several researchers
have investigated population size for GAS from different perspectives.
Some have provided a theoretical analysis of the optimal population
size [3], [12]. Usually, however, most effort was dedicated to the em-
pirical finding of the “optimal” population size [11]. Also, the relation-
ship between replacement operator and population size was analyzed
in [10]. The experimental results presented in Table III corroborate the
importance of population size in terms of Best Fitness; nevertheless,
as described in the following subsection, for diversity within the pop-
ulation of GAs (average fitness and its standard deviation), there exist
more influential factors than population size.

Concerning the number of generations, there are four homogeneous
groups that are not disjointed, and thus there exist levels of this factor
which can be classified within two groups simultaneously. The first
of these comprises level 1 (the number of generations is 40% lower
than the nominal value) and the last comprises level 5 (an increase of
40%). As can be inferred from these tables, the greater the number
of generations or population size, the more possibilities there are of
achieving a good individual from the current population, as there exists
a greater variety of individuals and these have evolved through several
generations.

Table III describes the results for the mutation probability, showing
three nondisjoint homogeneous groups (some values correspond simul-
taneously to two homogeneous groups). The levels of this factor are or-
dered such that the lowest mean LS corresponds to the lowest mutation
probability value used (PM1), while the Best Fitness is obtained with a
high mutation probability (PM5). The utility of the mutation operator,
together with the probability of applying it to the population elements,
is that it provides diversity by introducing extra variability into the pop-
ulation. Due to its behavior, the mutation probability is not so signifi-
cant from the point of view of the Best Fitness, but it is very important
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TABLE III
MULTIPLE RANGE TESTS FOR THEVARIABLE ANALYZING THE BEST FITNESS

when the diversity of the GA is analyzed. For the crossover probability,
there are four overlapping homogeneous groups. In this case, the prob-
ability levels are not totally ordered, although the lowest values ofpc

produce a lower mean LS value. With respect to the crossover operator,
it is clear that there do not exist two nondisjoint groups of the oper-
ator type. Therefore, the crossover operators that have been designed
present a very similar behavior pattern (one- and two-point crossover).

Regarding the mutation operator, from Table III it is clear that there
are two homogeneous groups with no intersection, of which the bit-
flip-type produces a lower mean LS. The reason for this is to be found
in the functioning of the mutation operator. The inversion operator pro-
duces a higher average number of changes in the bits among the popu-
lation elements. This could lead to a greater diversity among the popu-

lation, although average fitness would be lower; on the other hand, new
zones within the search space could be explored, where high fitness so-
lutions might be found.

We also consider the type of experiment performed to be a factor
that should be taken into account in statistical analysis. Table III
shows there are differences between the various examples, although
this factor is not the most relevant in the analysis. As mentioned
above, the type of selection, type of mutation, and population size
present a higherF -ratio. Nevertheless, it is interesting to analyze the
four nondisjoint groups that make up the six levels of the “type of
experiment” factor. In the first group, with no intersection with the
others, is the Prisoner’s dilemma. The second and third groups include
the Knapsack, Riolo, and Michalewicz function 1 problems, which do
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TABLE IV
ANOVA TABLE FOR THE ANALYSIS OF THE MAIN PARAMETER IN THE DESIGN OF AGA FROM THE VIEWPOINT OF THEAVERAGE FITNESS

intersect. The final group includes the three minimization functions
presented in Michalewicz.

An important analysis that must be carried out is that of the inter-
action between the main effects considered Table II. Although all the
interactions between the factors have been analyzed, the most statisti-
cally significant interactions are between the population size and the
selection operator, between the number of generations and the selec-
tion operator and between the number of generations and the crossover
probability.

B. Analyzing the Diversity: The Average Fitness

The methodology employed is the same as that described in the pre-
vious subsection. In this case, we are calculating the average fitness of
all the individuals within the last population examined. Table IV gives
variance analysis for the average fitness.

The type of selection operators, the mutation probability and type,
and the number of generations present the greatest statistical relevance.
On analyzing the selection operator in the multiple range test table for
the average fitness (see Table V), we find that the determinist selection
operator presents the highest mean, while the Roulette Wheel produces
the lowest. The reason for this is that the Roulette Wheel operator pro-
duces the greatest diversification in the GA solutions. Despite the fact
that the likelihood of the number of copies of each solution is directly
proportional to their fitness, due to the randomness of the process, the
number of copies obtained may vary considerably, thus increasing the
diversity of the population and reducing average fitness. Nevertheless,
the determinist algorithm presents the highest Average Fitness values.

When we analyze the mutation probability factor, it is important to
note that the different levels of this parameter produce five disjoint
sets; thus it is highly relevant to a study of Average Fitness. The lowest
mean value is found with the highest mutation probability (PM5); ob-
viously, this is due to the fact that the latter is associated with diversity
among the population, with low fitness individuals lowering the Av-
erage Fitness value. Table V shows that the levels of this factor are or-
dered from highest probability (lowest mean LS) to lowest probability
(highest mean LS). It should be noted that the mutation probability is a
determining factor in the evolution of the GA in terms of diversity (av-
erage and standard deviation), because its function is to explore new
areas within the search space by carrying out random changes within
the chains of bits.

Regarding the mutation operator, inversion or specular reflection
produces a greater number of changes in the bits of the individuals com-

prising the population, which could result in greater diversity and thus
a lower average fitness value than the bit-flip mutation operator.

As expected, when the number of generations increased, so did the
average fitness. In this case, the different levels of this factor are ordered
from lowest to highest. Of the other factors analyzed, it is noteworthy
that population size is not such a relevant factor in average fitness, as it
was in best fitness, because the former is obtained for the total number
of individuals in the final generation and, statistically, this mean is very
similar for the different population sizes tested. Nevertheless, when the
population size is very large (POP5), there exists the possibility of ex-
ploring a greater number of regions within the input space, although
some of these will present a small fitness value. This would result in a
decrease in Average Fitness (in Table V, for POP5 the increase of 40%
presents the lowest mean LS, and the different levels are ordered from
highest to lowest).

Finally, the factors with least influence on population diversity
are the type of crossover used and the application probability. For
the Crossover Probability factor, there are two groups with a high
degree of intersection. This means that the choice between different
crossover probabilities does not greatly alter the behavior of the GA
with respect to diversity. It should be noted that, on the contrary to
the other factors analyzed, the levels ofpc are not perfectly ordered,
although there does exist a tendency for a lower probability of the
latter to be associated with a probability of higher Average Fitness in
the final population. With regard to the type of crossover, just as with
Best Fitness, there do not exist two nondisjoint groups of the crossover
type and the operators that have been designed present a very similar
behavior pattern.

VI. CONCLUSION

A statistical study of the different parameters involved in the de-
sign of a GA has been carried out by using the analysis of variance
(ANOVA), which consists of a set of statistical techniques that analyze
and compare experiments by describing the interactions and interre-
lations between either the quantitative or qualitative variables (called
factorsin this context) of the system. The motivation of the present sta-
tistical study lies in the great variety of alternatives that a designer has to
take into account when designing a GA. Thus, instead of relying on in-
tuitive knowledge, it is necessary to gain a more precise understanding
of the significance of the different alternatives and their interaction. For
example, the selection operator, the number of generations, the muta-
tion probability, and the size of the population within a GA are factors
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TABLE V
MULTIPLE RANGE TESTS FOR THEVARIABLE ANALYZING THE AVERAGE FITNESS

of great importance for the dynamics and quality of the convergence
of a system. However, determining these parameters for a particular
problem is still an open question, and it is also necessary to bear in
mind the impact of the experimental setup on the conclusions derived.
It is also important not to isolate or eliminate the different interactions
of each of the above factors with the others. In summary, it would be
of great interest to perform an analysis of the influence of modifying
the main factor involved in the design of the GA, while simultaneously
taking into account all the other parameters (application probabilities

of the genetic operators, type of selection, mutation, and crossover op-
erators, number of generations, and population size). The methodology
based on ANOVA makes it possible to classify different configurations
(here calledlevels) that can be used for given factors. Thus it is possible
to obtain homogeneous groups of levels with similar characteristics.

One of the goals of this study was to analyze the dynamics of GAs
when confronted with modifications to the principal parameters that
define them, taking into account the two main characteristics of GAs;
their exploration and exploitation capacity. Therefore, the dynamics of
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GAs have been analyzed from two viewpoints. We studied the best so-
lution found by the system, to observe its ability to obtain a local or
global optimum. The second viewpoint is the diversity within the pop-
ulation of GAs; to examine this, the average fitness was calculated. For
the first viewpoint, the most important factors were selection operator,
type of mutation, the population size, and the number of generations.
It is noteworthy that the type of crossover factor (one point/two points)
produces practically identical results, although the application proba-
bility (pc) does present statistically significant differences in the evo-
lution of the GA from the perspective of Best Fitness. Regarding the
diversity of the population in the final generations, analysis of the av-
erage fitness revealed that the most important factors are the selection
and mutation operators and the mutation probability.

ACKNOWLEDGMENT

The authors appreciate the comments from the anonymous referees.

REFERENCES

[1] L. Davis, The Handbook of Genetic Algorithms. New York: Van Nos-
trand, 1991.

[2] R. A. Fisher, “Theory of statistical estimation,” inProc. Cambridge
Philos. Soc., vol. 22, 1925, pp. 700–725.

[3] D. E. Goldberg, K. Deb, and J. H. Clark, “Genetic algorithms, noise, and
the sizing of populations,”Complex Syst., vol. 6, pp. 333–362, 1992.

[4] J. J. Grefenstette, “Optimization of control parameters for genetic algo-
rithms,” IEEE Trans. Syst., Man, Cybern., vol. SMC-16, pp. 122–128,
Jan./Feb. 1986.

[5] F. Herrera and M. Lozano, “2-loop real-coded genetic algorithms with
adaptive-control of mutation step sizes,”Appl. Intell., vol. 13, no. 3, pp.
187–204, 2000.

[6] I. Jagielska, C. Matthews, and T. Whitfort, “An investigation into the ap-
plication of neural networks, fuzzy logic, genetic algorithms, and rough
sets to automated knowledge acquisition for classification problems,”
Neurocomputing, vol. 24, pp. 37–54, 1999.

[7] R. Mead,The Design of Experiments. Statistical Principles for Practical
Application. Cambridge, U.K.: Cambridge Univ. Press, 1988.

[8] Z. Michalewicz, Genetic Algorithms+ Data Structures= Evolution
Programs, 3rd ed. New York: Springer-Verlag, 1999.

[9] H. Mühlenbein, “How genetic algorithms really work—Part I: Mutation
and hillclimbing,” inProc. 2nd Conf. Parallel Problem Solving form Na-
ture, R. Männer and B. Manderick, Eds. Amsterdam, The Netherlands,
1992, pp. 15–25.

[10] M. O. Odetayo, “Relationship between replacement strategy and popu-
lation size,” inProc. MENDEL, P. Osmera, Ed., 1996, pp. 91–96.

[11] M. Ryynänen, “The optimal population size of genetic algorithm in mag-
netic field refinement,” inProc. 2nd Nordic Workshop Genetic Algo-
rithms and Their Applications, J. T. Alander, Ed., 1996, pp. 281–282.

[12] R. Smith, “Population size,” inHandbook of Evolutionary Computation,
T. Bäck, D. Fogel, and Z. Michalewicz, Eds. New York: IOP, Bristol,
U.K., and Oxford Univ. Press, 1997, pp. E1.1:1–5.

Pursuit Evasion: The Herding Noncooperative
Dynamic Game—The Stochastic Model

Pushkin Kachroo, Samy A. Shedied, and Hugh Vanlandingham

Abstract—This correspondence proposes a solution to the herding
problem, a class of pursuit evasion problem, in stochastic framework. The
problem involves a “pursuer” agent trying to herd a stochastically moving
“evader” agent to a pen. The problem is stated in terms of allowable
sequential actions of the two agents. The solution is obtained by applying
the principles of stochastic dynamic programming. Three algorithms for
solution are presented with their accompanying results.

Index Terms—Admissible policy search stochastic shortest path, policy
iteration, value function, value iteration.

I. INTRODUCTION

This correspondence presents the herding problem as a class of
pursuit evasion problems. However, in pursuit evasion problems, the
terminal state satisfies the spatial coordinates of the pursuer and the
evader to be the same [1]–[3]. Meanwhile, the terminal state in the
herding problem relates to the evader having reached and satisfied at
the same time fixed spatial coordinate point. In another paper [4], we
have studied the herding problem in a deterministic setting where the
evader is passive. This correspondence studies the stochastic version
of the problem where the evader dynamics involves randomness. A
classic pursuit evasion game in a stochastic framework was studied
[5], but with different terminal state than that of the problem studied
here.

This problem can be viewed as a modified version of stochastic
shortest path problems. Despite the fact that shortest path techniques,
like label correcting algorithms [6] and auction algorithms [7], provide
a solution to shortest path problems, these techniques fail to deal with
situations like the one we study in this correspondence.

The correspondence is organized as follows. In Section II, we
give a detailed description of the system dynamics since it represents
the backbone of our proposed solution technique. Based on these
dynamics, some characteristic properties of the system are derived
in Section III. In Section IV, we introduce a mathematical statement
for the system model. Finally, the proposed solution techniques
with simulation results and graphs are given in Sections V and VI,
respectively.

II. A N N �N STOCHASTICPURSUER–EVADER PROBLEM

In this section, we introduce the pursuer–evader problem in anN �

N grid and present the dynamics. The pursuer can occupy one of the
N �N positions, as may the evader. However, they cannot both have
the same initial position. The objective of the pursuer is to drive the
evader to the pen, (0, 0) position, in minimum expected time.

The state vector at timek,xxx(k), is determined by the position of the
evader and the pursuer, i.e.

xxx(k) = [xe(k) ye(k) xp(k) yp(k)]
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